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Abstract
The Lieb–Shultz–Mattis theorem is extended to Heisenberg chains with long-
range interactions. We prove that the half-integer spin chain has no gap, if it
possesses unique ground state and the exchange decays faster than the inverse-
square of distance between spins. The results can be extended to a wide class
of one-dimensional models.

PACS numbers: 75.10.Jm, 75.50.Ee, 71.10.−w, 68.35.Rh, 05.50.+q, 02.30.Ik

The zero-temperature ground-state properties of one-dimensional antiferromagnets have been
studied intensively over a long period. There are various numerical and field theoretical
approaches to the problem. At the same time there are just a few exact non-perturbative
methods. The spin S = 1/2 antiferromagnetic (AF) Heisenberg spin chain with nearest-
neighbour (n.n.) interactions was solved exactly by Bethe [1]. Bethe’s ansatz was applied
later to peculiar higher spin chains with polynomial spin exchange [2].

Lieb et al [3] offered another non-perturbative approach. They proved that S = 1/2
even length L AF n.n. Heisenberg chain with periodic boundary conditions has at least one
low-energy, O(1/L) excitation above the unique ground state. Later Haldane [4], using the σ -
model description, argued that the AF n.n. integer spin Heisenberg chains have a gap between
the ground state and the first excited state, whereas the half-integer spin chains have no gap.
The part of Haldane’s conjecture was proved for the half-integer spin chains [5, 6] by means
of extension of the Lieb–Schultz–Mattis (LSM) theorem. Namely, the half-integer spin chains
are gapless if they have a unique ground state in the thermodynamic limit.

The LSM theorem was also extended to the case with an applied magnetic field [7]. It
was generalized to Heisenberg chains with SU(n) [6] and other [8] symmetries, to fermionic
chains [9], to spin [10] and fermionic [11] models on ladders, etc. Very recently, its extension
to higher dimensions has been discussed [12–14] applying the arguments used by Laughlin in
the quantum Hall effect [15].
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This letter is devoted to the extension of LSM theorem to AF Heisenberg chains with
long-range interactions. The S = 1/2 chain with the spin exchange decaying as 1/r2, where
r is the distance between spins, has been extensively investigated since it was solved exactly
by Haldane and Shastry [16]. The integrability is a consequence of an infinite symmetry of
this model [17]. Despite the presence of long-range interactions, its low-energy properties
are similar to those of the chain with n.n. interactions: both models are gapless and belong to
the same universality class. Here we discuss the zero-temperature ground-state properties of
the translationally invariant AF half-integer spin chain with arbitrary exchange coupling. We
will prove that, in the thermodynamic limit, it either has gapless excitations or degenerate
ground states, provided that the coupling decays faster than 1/r2.

The Hamiltonian of a Heisenberg chain with long-range interactions, which is studied
here, is

HL =
L′∑

r=1

L−1∑
i=0

J (r) �Si · �Si+r L′ = (L − 1)/2 (1)

where the chain length L is chosen to be even. We see that the sum over r is taken up to the
half-size L′ of the chain. Note that the spin exchange coupling J (r) depends on the distance
between the spins only. Periodic boundary conditions are assumed: �Si = �Si+L. The last two
conditions imply the translational invariance of (1).

Let us consider the nonlocal unitary operator

U = eA A = 2π i

L

L∑
k=1

kSz
k . (2)

It rotates the spins around the z-axis with the relative angle 2π/L between the neighbouring
spins. We are interested in formal algebraic properties of U. However, as was shown recently,
it has a clear physical meaning too. In spin chains and ladders, the ground-state expectation
value of U can be treated as an order parameter, which characterizes various valence-bond-
solid ground states [18]. In sine-Gordon theory, it is related to expectation values of vertex
operators [19].

It is well known that the action of (2) on the ground state of the Heisenberg chains with
short-range interactions gives rise to the state with an energy which approaches the energy
of the ground state in the thermodynamic limit L → ∞ [3, 6]. Below we will discuss the
possibility of extending this property to the Hamiltonian (1) with long-range interactions.

In this letter, for the sake of simplicity, we assume the uniqueness of the ground state
|�〉 of a finite chain. Note that in this case |�〉 is a spin-singlet. Our assumption is fulfilled
for a wide class of models on even length chains. In the case of alternating couplings,
i.e. J (2r − 1) > 0, J (2r) � 0, it can be proved exactly using Perron–Frobenius-type
arguments [6].

It is convenient to rewrite HL in the following form:

HL =
L′∑

r=1

J (r)Hr
L where Hr

L =
L−1∑
i=0

�Si · �Si+r .

Then the energy gap between the ground state |�〉 and the shifted state U |�〉 is

�EL =
L′∑

r=1

�Er
L where �Er

L = 〈�|U+Hr
LU |�〉 − 〈�|Hr

L|�〉. (3)
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The straightforward calculations show that

U+Hr
LU − Hr

L =
L−1∑
i=0

{
K(r/L)S+

i S−
i+r + h.c.

}
+ [Hr

L,A] (4)

where

K(φ) = 1
2 {exp(2π iφ) − (1 + 2π iφ)} and S±

i = Sx
i ± iSy

i .

Note that the coefficients in front of spin operators do not depend on the absolute positions of
the spins, but depend on their distance. Taking the sum of (4) over r, we obtain

U+HLU − HL =
L′∑

r=1

J (r)
{
K(r/L)Hr+

L + h.c.
}

+ [HL,A] where Hr
L

± =
L−1∑
i=0

S±
i S∓

i+r .

(5)

The mean value of the commutator [HL,A] vanishes on |�〉, because |�〉 is an eigenstate of
HL. The mean value of Hr

L
± is of the order of L:

|〈�|Hr
L

±|�〉| � 1/4L. (6)

Now, using (3), (5) and (6), we can estimate the upper bound of the gap:

|�EL| � L

2

L′∑
r=1

J (r)|K(r/L)| = 1

L

L′∑
r=1

r2J (r)
|K(r/L)|
2(r/L)2

. (7)

The function |K(φ)|/(2φ2) is continuous on the unit interval 0 � φ � 1 (see the definition in
(4)). So, it can be replaced in (7) by its maximal value C and we obtain

|�EL| � C

L

L′∑
r=1

r2J (r). (8)

We conclude that the energy gap between the ground state and the shifted state U |�〉 vanishes
in the thermodynamic limit, provided that

lim
L→∞

1

L

L′∑
r=1

r2J (r) = 0.

Any function, obeying

lim
r→∞ r2J (r) = 0 (9)

satisfies this condition. Note that up to now we have not distinguished between the integer
and the half-integer spin chains.

In order to prove that U |�〉 is a real excitation, i.e. it does not coincide with the ground
state |�〉 and does not approach it in the thermodynamic limit, it is sufficient to show that
both states are orthogonal [3, 6]. We use the translation T by one lattice site to demonstrate
this. The ground state is an eigenstate of T, because T commutes with the Hamiltonian
(1): T |�〉 = eip|�〉, where p = 0, π due to the reflection symmetry. The shift operator
(2) transforms as: T −1UT = U exp

(
2π iSz

1

)
exp (−2π iSz/L), where Sz = ∑L−1

i=0 Sz
i is the

z-component of the total spin �S. We have Sz|�〉 = 0, because |�〉 is a singlet. Using the
equations above, we obtain: T U |�〉 = e−2π iS eipU |�〉. We see that the eigenvalues of T on
|�〉 and U |�〉 differ for half-integer S only. So, in this case the two states are orthogonal.
Then, in the L → ∞ limit, either (i) U |�〉 generates another ground state(s) or (ii) |�〉 remains
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a unique ground state with gapless excitations, created by U |�〉. In the second case, of course,
the ground state should be a spin-singlet.

We come to the conclusion that:

The translationally invariant AF Heisenberg half-integer spin chain is gapless if it
has unique ground state and the exchange coupling of interacting spins decays faster
than the inverse-square of their distance.

This is the main result of this letter. Below we will discuss it and compare with some
known models.

The examples of J (r), which satisfy the conditions above, are

(a) 1/(r2 log(r)) (b) 1/rα α > 2 (c) rn exp(−r/a) a > 0.

The last case is a short-range interaction effectively.
Note that the resulting statement excludes the coexistence of a gap and a unique ground

state under the aforementioned conditions. For finite even values of L the uniqueness of the
ground state can be proved for a wide class of the chains, as was mentioned above. In the
thermodynamic limit, however, the low-energy state can generate either a continuum of gapless
excitation or spontaneously broken translation symmetry. In the last case, the chain can have
a gap. The simplest example, which demonstrates both types of behaviour, is related to the
short-range interaction case. It is the well-known chain with nearest-neighbour J (1) = J1 > 0
and next-nearest-neighbour J (2) = J2 > 0 interactions (J (r) = 0 for r > 2) [20]. For J2 = 0
(the XXX model) this chain is exactly solvable and gapless with a unique ground state, as was
mentioned above. At the Majumdar–Ghosh point J2 = 0.5J1 it has a gap and two different
ground states, consisting of nearest-neighbour dimers [21]. Although there are no exact results
for the ground state behaviour between these two exactly solvable points, the conformal field
theory approach predicts that for small values of J2 the chain still remains gapless with a
unique ground state [20], whereas for small values of J1 it has a gap and twofold degenerate
ground states [22]. The critical point J c

2 ≈ 0.241J1 [23], which has been calculated with high
precision [24], separates the two different phases.

Our result gives only the sufficient condition for the chain to be gapless or to have
degenerate ground states in the thermodynamic limit. The integer spin chains or chains
with exchange coupling decay slower than 1/r2 can have a gap and a unique ground state
simultaneously. They can also be gapless. For example, the S = 1 chain with the alternating
exchange J (r) = (−1)r/rα, 1 < α < 3 exhibits gapless behaviour [25]. However, the
same chain with J (r) = 1/r2 has a gap, as was shown numerically in [26]. Its ground-
state properties are similar to those of a Haldane chain with n.n. interactions [4]. Another
simple example is the case when the spin exchange coupling does not depend on the distance:
J (r) = J for all r. This is an exactly solvable model with the energy levels up to an
additive constant proportional to S(S + 1), where S = 0, 1, . . . , SL is the total spin of the
chain. They are highly degenerate due to the additional permutation group symmetry. The
ground-state subspace consists of all singlets and there is a gap between them and the lowest
S = 1 excitations. Note that this property cannot be considered as a consequence of the
statement proved in this letter, because the coupling J (r) = J does not satisfy the required
condition.

As we have mentioned before, the S = 1/2 chain with J (r) = 1/r2 corresponds to
the Haldane–Shastry integrable model. In the case of the periodic boundary conditions the
coupling is slightly modified1: J Hsh

L (r) = ((L/π) sin(πr/L))−2. For J (r) = J HSh
L (r) the

1 Of course, we have: limL→∞ J HSh
L (r) = 1/r2. Note that the dependence on the chain length does not change

anything in the final result (7), where we can impose J (r) = JL(r).
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upper bound of the gap in (7) is nonzero. This fact does not guarantee the existence of
a low-energy state2. Nevertheless, the exact solution shows that this model has gapless
excitations.
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